Identification and prediction using recurrent compensatory neuro-fuzzy systems

نویسندگان

  • Cheng-Jian Lin
  • Cheng-Hung Chen
چکیده

In this paper, a recurrent compensatory neuro-fuzzy system (RCNFS) for identification and prediction is proposed. The compensatory-based fuzzy method uses the adaptive fuzzy operations of neuro-fuzzy systems to make fuzzy logic systems more adaptive and effective. A recurrent network is embedded in the RCNFS by adding feedback connections in the second layer, where the feedback units act as memory elements. In this paper, the RCNFS model is proved to be a universal approximator. Also, an online learning algorithm is proposed which can automatically construct the RCNFS. There are no rules initially in the RCNFS. They are created and adapted as online learning proceeds through simultaneous structure and parameter learning. Structure learning is based on the degree measure and parameter learning is based on the ordered derivative algorithm. Finally, the RCNFS is used in several simulations. The simulation results of the dynamic system model have shown that (1) the RCNFS model converges quickly; (2) the RCNFS model requires a small number of tuning parameters; (3) the RCNFS model can solve temporal problems and approximate a dynamic system. © 2004 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic System Identification Using a Recurrent Compensatory Fuzzy Neural Network

This study presents a recurrent compensatory fuzzy neural network (RCFNN) for dynamic system identification. The proposed RCFNN uses a compensatory fuzzy reasoning method, and has feedback connections added to the rule layer of the RCFNN. The compensatory fuzzy reasoning method can make the fuzzy logic system more effective, and the additional feedback connections can solve temporal problems as...

متن کامل

A Hierarchical Recurrent Neuro-Fuzzy System

Fuzzy systems, neural networks and its combination in neuro-fuzzy systems are already well established in data analysis and system control. Especially, neurofuzzy systems are well suited for the development of interactive data analysis tools, which enable the creation of rule-based knowledge from data and the introduction of a-priori knowledge into the process of data analysis. However, its rec...

متن کامل

COD Removal Prediction of DAF Unit Refinery Wastewater by Using Neuro- Fuzzy Systems (ANFIS) (Short Communication)

In this study the Dissolved Air Flotation (DAF) system in oil refinery was investigated for the treatment of refinery wastewater. In order to investigate sytem a labratory scale rig was built. The aim is to remove some of the wastewater pollutant materials and data modeling of COD test.The effect of several parameters on flotation efficiency namely, saturator pressure, and coagulant dose, on CO...

متن کامل

DISTURBANCE REJECTION IN NONLINEAR SYSTEMS USING NEURO-FUZZY MODEL

The problem of disturbance rejection in the control of nonlinear systems with additive disturbance generated by some unforced nonlinear systems, was formulated and solved by {itshape Mukhopadhyay} and {itshape Narendra}, they applied the idea of increasing the order of the system, using neural networks the model of multilayer perceptron on several systems of varying complexity, so the objective...

متن کامل

Neuro-Fuzzy Based Algorithm for Online Dynamic Voltage Stability Status Prediction Using Wide-Area Phasor Measurements

In this paper, a novel neuro-fuzzy based method combined with a feature selection technique is proposed for online dynamic voltage stability status prediction of power system. This technique uses synchronized phasors measured by phasor measurement units (PMUs) in a wide-area measurement system. In order to minimize the number of neuro-fuzzy inputs, training time and complication of neuro-fuzzy ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Fuzzy Sets and Systems

دوره 150  شماره 

صفحات  -

تاریخ انتشار 2005